Telegram Group & Telegram Channel
Forwarded from Machinelearning
📕 Андрей Карпаты опубликовал новый пост- необычный путь распространения LLM, их влияние на людей и организации, причины разрыва и взгляд в будущее.

В нем он анализирует необычное распространение больших языковых моделей (LLM).

Вот его содержание:
В отличие от традиционных технологий, которые обычно проходят путь от государственных и военных структур через корпорации к индивидуальным пользователям, LLM сразу стали широко доступны обычным людям.

Это позволило моделям значительно расширить свои возможности в таких областях, как программирование, анализ данных и создание контента, без необходимости привлекать узких специалистов.

ChatGPT — самое быстрорастущее приложение в истории, у него 400 миллионов активных пользователей в неделю.

Люди используют его для написания текстов, программирования, перевода, обучения, анализа, исследований и генерации идей

Это не просто улучшение жизни— это мощный бустер возможностей человека.

И барьер для входа использования LLM невероятно низкий: модели бесплатны или дешевы, быстры, доступны всем через API или локально, и говорят на любом языке, включая сленг и эмодзи.

Никогда еще человек не получал такого технологического скачка так быстро.

Почему же эффект для корпораций и государственных институтов не такой весомый?

Во-первых, LLM дают "квази-экспертные" знания: широкие, но неглубокие и ненадежные. Для организаций, где уже есть эксперты (инженеры, юристы, аналитики), это лишь слегка повышает эффективность.

А вот для человека, который обычно эксперт лишь в одном, LLM открывают новые горизонты: программировать, разбираться в юриспруденции, анализировать данные или создавать контент — все это теперь возможно без посторонней помощи.

Во-вторых, организации решают более сложные задачи: интеграции, устаревшие системы, безопасность, регуляции, координация.

Ошибки LLM тут куда опаснее — "вайб кодить" не выйдет.

В-третьих, есть инерция: бюрократия, культура компаний, переобучение — все это тормозит внедрение.

Пока LLM радикально меняют жизнь людей, а не организаций.

Мэри, Джим и Джо получают больше, чем Google или правительство США. Но что дальше? Если топовые модели станут сильно дороже и лучше, крупные игроки смогут "купить интеллект", и элита снова уйдет в отрыв.

Сегодня Билл Гейтс использует тот же GPT-4o, что и вы, но завтра его ребенок может учиться у GPT-8-pro-max, а ваш — у GPT-6-mini.

Сейчас мы находимся в уникальном моменте: будущее уже здесь, и технологии удивительно равномерно распределены. Будущее тут, и оно доступно для всех. Власть людям!

🔗 Оригинал

@ai_machinelearning_big_data

#AndrejKarpathy #influencer



tg-me.com/machinelearning_interview/1705
Create:
Last Update:

📕 Андрей Карпаты опубликовал новый пост- необычный путь распространения LLM, их влияние на людей и организации, причины разрыва и взгляд в будущее.

В нем он анализирует необычное распространение больших языковых моделей (LLM).

Вот его содержание:
В отличие от традиционных технологий, которые обычно проходят путь от государственных и военных структур через корпорации к индивидуальным пользователям, LLM сразу стали широко доступны обычным людям.

Это позволило моделям значительно расширить свои возможности в таких областях, как программирование, анализ данных и создание контента, без необходимости привлекать узких специалистов.

ChatGPT — самое быстрорастущее приложение в истории, у него 400 миллионов активных пользователей в неделю.

Люди используют его для написания текстов, программирования, перевода, обучения, анализа, исследований и генерации идей

Это не просто улучшение жизни— это мощный бустер возможностей человека.

И барьер для входа использования LLM невероятно низкий: модели бесплатны или дешевы, быстры, доступны всем через API или локально, и говорят на любом языке, включая сленг и эмодзи.

Никогда еще человек не получал такого технологического скачка так быстро.

Почему же эффект для корпораций и государственных институтов не такой весомый?

Во-первых, LLM дают "квази-экспертные" знания: широкие, но неглубокие и ненадежные. Для организаций, где уже есть эксперты (инженеры, юристы, аналитики), это лишь слегка повышает эффективность.

А вот для человека, который обычно эксперт лишь в одном, LLM открывают новые горизонты: программировать, разбираться в юриспруденции, анализировать данные или создавать контент — все это теперь возможно без посторонней помощи.

Во-вторых, организации решают более сложные задачи: интеграции, устаревшие системы, безопасность, регуляции, координация.

Ошибки LLM тут куда опаснее — "вайб кодить" не выйдет.

В-третьих, есть инерция: бюрократия, культура компаний, переобучение — все это тормозит внедрение.

Пока LLM радикально меняют жизнь людей, а не организаций.

Мэри, Джим и Джо получают больше, чем Google или правительство США. Но что дальше? Если топовые модели станут сильно дороже и лучше, крупные игроки смогут "купить интеллект", и элита снова уйдет в отрыв.

Сегодня Билл Гейтс использует тот же GPT-4o, что и вы, но завтра его ребенок может учиться у GPT-8-pro-max, а ваш — у GPT-6-mini.

Сейчас мы находимся в уникальном моменте: будущее уже здесь, и технологии удивительно равномерно распределены. Будущее тут, и оно доступно для всех. Власть людям!

🔗 Оригинал

@ai_machinelearning_big_data

#AndrejKarpathy #influencer

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1705

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Machine learning Interview from ar


Telegram Machine learning Interview
FROM USA